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ABSTRACT : 6-Allyloxy-9-benzyl 
n-1 undergo normal thermal 0 +N [ ,31 rearrangement, either neat or in o- p” 

rine (2) and 9-benzyl-6-propargyloxy 
I” 

rine 
rchlo- 

robenzene. The latter leads to the novel, I>llenyl-9-benzyl-hypoxanthine (6). 
The related 4-allyloxy and 4-propargyloxy quinazolines (3 12) also undergo 
smooth thermal 0 + N Claisen rearrangement. In the case of -@I, the primary 
allenic product is Lrther transformed into 3-propargylquinazolin-l-one (El 
and the allene dimer ( 14). - 

Purines and related systems, having a number of ring nitrogens could undergo, normal or 

anionic or cationic or catalysed [3,3] rearrangement. The extensive studies by Leonard and co-workers 

have elegantly demonstrated the operation of anionic type Claisen rearrangement in guanines where 

the 6-O + S-C ligand change occurs by two tandem [3,3] shifts’. A surprising aspect of this study was 

the finding that the normal [3,3] rearrangement of these systems was quite difficult. Thus, whilst L-allylo- 

xyguanine remained unchanged in refluxing DMF for 24 h and gave six products in refluxing triglyme 

br 4 h, its conjugate base underwent smooth tandem Cope rearrangement in diglyme during 5 h. Similar 

difficulties were experienced with 6- (2’-butenyloxy-3’-methyl) purinejb. We have found that 9-protected 

purines and the related quinazolines possessing either O-ally1 or 0-propargyl ligands undergo normal 

[3,31 rearrangement either neat or in refluxing o-dichlorobenzene2. This finding is noteworthy since 

it establishes the operation of normal [3,3] rearrangement in purines and related systems and identifies 

these amongst the handful of compounds that undergo 0 * N Claisen rearrangement3. 

9-BenzyIA<hloropurine (L) on treatment with H2C=CH-CH20Na in ally1 alcohol at reflux 

for I5 h gave 6-allyloxy-9-benzylpurine (2, 71%). Compound (2) when sealed under nitrogen and held 

neat at ISO-190°C for 6 h gave the Claisen rearrangement product I-allyl-9benzylhypoxanthine (3 

30%). The structural assignment for (2) is supported by spectral and analytical data and by comparison 

with an authentic sample prepared in 56% yield by alkylation of the conjugate base of 9-benzylhypoxan- 

thine (&generated with 1.2 eq of NaOMe in dry MeOH- with 1.2 eq of allylbromide4. Compound (I) 

on reflux in propargyl alcohol containing I.1 eq of HC ZCH-CH20Na for 2 h gave 9-~nzyl&propargyl_ 

oxypurine (3 80%) which in o-dichlorobenzene at I45OC during 2 h underwent smooth Claisen rearrange- 

ment giving rise to the novel allenic compound (5) (50%). The presence of the significantly downfield 

(202.2 ppm) peak typical for allenic sp carbon and other spectral data support the structural assignment 

for (5). The Claisen rearrangement offers the best route to the reactive molecule@, since attempted 

preparation of (5) by NaOMe catalysed isomerization of 9-benzyl-I-propargylhypoxanthine (iJ gave mixtures. 

Compound (71, in turn, was prepared in 86% yield from propargylbromide and (i), as described for (2). 
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5: 

dH2Ph 
R = -CH2-CH=CH2 2: R = -CH2-CH=CH2 

R = - CH2-CsC-H 1: R = -CH2-C=C-H 

0 

-CH=C=CH2 

dH2Ph 

The purine ring system is considered as a composite of the electron rich imidazole and 

electron deficient pyrimidine5. We report that quinazolines, consisting of the pyrimidine part, undergo 

facile 0 + N Claisen rearrangement. 4Chloroquinazoline (g) on treatment with 1.2 eq. of H2C=CH-CH2ma 

in ally1 alcohol gave 4-allyloxyquinazoline (9~ 89%), which, when held neat under nitrogen at 190-ZOOT 

for 24 h, underwent smooth Claisen rearrangement to 3-allyIquinazolin-4-one (& 75%). An authentic 

sample of (IO) was prepared by direct alkylation of the sodium salt of quinazolin-l-one (I 1) in 85% yield, - - 

4-Propargyloxyquinazoline (c)-prepared in 60% yield from (8)-in o-dichlorobenzene at 170-ISOT for 

12 h, gave 3-propargylquinazolin-l-one (13, 22%) and the allene dimer fi (13%), mp 309T’. Thus, whereas 

in the Claisen rearrangement of the purine (A), the allenic product (5) was quite stable, that with the 

quinazoline (z), the resulting allene partly dimerized to (14) and partly underwent isomerization to 

(fi)7. An authentic sample of (2) was prepared by alkylation orthe conjugate base of (II_). 

_g: R= -CH2-CH=CH2 10: R = -CH2-CH=CH2 

2: R = - CH 2-C’=-C-H n: R = -CH2-CSC- H 

We have also examined the Claisen rearrangements in these systems involving the change, 

X-N *C-N (X=0 or NH)8. The oxime ethers (15) and (I 8) were prepared in 62% and 90% yields respective- - - 

ly, by reaction of acetone oxime conjugate base with (I, and (!).6-Chloro-9-tetrahydropyranylpurine 

yielded the oxime ether 16 (76%) in a similar manner. - Thermolysis of either (2) or (16) in o-dichloro- 

benzene or neat gave, as the only isolable products, 9-benzylhypoxanthine (3) and 9_tetrahydropyranyl- 

hypoxanthine, most likely arising from Beckmann rearrangement involving the purinyloxy unit as the 

leaving group9 and in preference to prototropic shift followed by Claisen rearrangement. 

fi: R = -CH2Ph 

16: R = -THP - 

Surprisingly, the quinazoline oxime ether (s) on neat thermolysis yielded 20% of 4-oximino 

quinazoline (19). The (I 8) +(E) change can best be rationalised on the basis of hydrolysis, oxazirane forma- - - 

tion and C-O bond rupture9. 
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Finally, the known 4-isopropyJide~ehydrazino~inazoIine 
IO on attempted thermal poiyhetero- 

Claisen rearrangement underwent fragmentation leading to the eventuai isolation of quinazolin-l-one 

(1)). ‘Jhe Claisen rearrangement should provide superior strategies towards the preparation of diverse 

i-substituted purines. This aspect is being examined currently. 

Acknowledgements : We are most grate611 to Professor 5. Ranganathan for his valuable suggestions 

and advice. Financial assistance from DST is grate folly acknowledged. 

Experimental’ ’ 

I. The reaction of ~-benzyJ~~h!oropurine (I) with sodium aflyloxide t Preparation of 6allyloxy- 

9-benzyl~rine (2) : 

Under stirring, 9-benzyl-6~hJoro~r~ne (1.5g, 6.1 mmofjJ2 was added to a SOlotiOn of 
sodium aflyloxide in ally1 aJcoho1.. prepared from sodium (0.14 

!? 
6.1 mmof) and ally1 alcohol ( - 20 ml).. 

the mixture refluxed for 1.5 h, filtered, the filtrate evaporate , the residue triturated with hot benzene 
(- 50 ml), decanted and evaporated to give 1.15~ (70%) of 6-ailyloxy-9-bentylprine (2) as CoJourJess 
needles, mp 65’C (Found : C, 67.87; H, 5.43; Cafe. for C15H 4N40 : C, 67.67; H, 5.26%); IR : v 

r’:: 5H), 
3080, 3020, 1600, 1580, 1050; NMR : 6 CCDCJ3) 
7.8 Is, I W), 8.5 fs, 1H). 

5.1 fm, 2H), 5.38 (m, 4H), 6.18 (m, ~‘~~~ 

Il. Thermal rearrangement of 6-alJyJoxy~Y~en~vJ~urine (21 : Isolation of E 3,3] product, I -alJyl-Y-bentyJ- 

hypoxanthine (3) : 

Under nitrogen, 6allytoxy-9-benzylpurine (& I.Og, 3.76 mmof) was sealed and held at 
JSO-JYO*C fkr 6 h, cooled, extracted with CH Cl , 
silica gel topped with activated charcoal, sol R5 

the organic extract passed through a short bed of 
nt evapcrrated and the residue on crystallization from 

benzene gave (21 as colourless prisms, mp. 1 JY-JJ6”C, yield 0.29 
CaJc. br C H 4N 0 : C, 67.67; H, 5.26%); JR : v 
NMR : S(C@J$ 

fKJ3r) cm-J 
g (29%) (Found : C, 67.84; H, 4.84 

3100, 3040, 1685, 1580, IS4S, 1515; 
8.66 (dd, 2H), 5.2 (m, 4H), 5.9 (rn,T& 7.2 (s, 5H), 7.6 (s, IH), 7.9 (s, JH). 

III. The reaction of Y-benzyfhypoxanthine (4) with allylbromide : Preparation of J-al&l-Y-benzylhypoxan- 

thine (3) : 

Y-bentyJhypsxan~~~~b;i~. 
(O.l2Jg, 1.2 mmoi) was added to a stirred solution of the sodium salt of 

m MeOH -prepared from Na (O.O27g, I.2 mmol) in dry methanof f - I5 ml) 
and (4, (O,226g, I m&&i)- the reaction mixture refJuxed for 2 h, cooled, solvents evaporated and the 
residue chromatographed on silica gel. Elution with PhH:EtOAcr:I:J gave 0.15 g (56%) of I-alJyl-9-benzyi- 
hypoxanthine (2) as colourless prisms, mp. 116*C, which was identical to sample obtained from Experiment 
ft. 

1V. ‘Jhe reaction of Y-benzyl-f;-chIoropurine( I) with sodium propar&oxide : Preparation of 9-benzyl-C 

~ro~r~loxy~r~ne (5) t 

9-8enzyl-6-chloropurine (5 O.&g, 2.9 mmolf was added to a stirred solution of sodium 

P- 
ropargyioxide in propargyl alcohol- pre 

10 m&the mixture refluxed for 2 R 
red from sodium (O.O7g, 3.19 mmoi) and propargy! .alcohol 

, cooled, solvents evaporated, the residue mixed wttb water 
( - 100 mi), filtered, dried and chrokatographed. E!ution with PhH:EtOAcrrk7 gave 0.5 g (80%) of 9-benzyJ 
-6-propargyloxypurine (21 as colourless needles, mp- 117-i 18T (Found t _$, 68.05; H, 4.31; N, 21.7 

c, 68.1; H, 4s~ N, 21.2%); IR t V (KBr) cm 3320, 3100, J6101j585; fi - 
.5 (t, JH), 5.25 (d, 2H), I.43 (5, 2H), 7.95: 5H), 7.92 Is, IHI, 8.6 (s, 1X); C-NMR 

159.3, 153.3, 150.3, 143.9, 14O.G 135.1, 130.1 129.6, 128.8, 127.8& 126.5 73.2 
47.4 (CH2Ph);mlz: 264 fM+)t 209 (M+-(-~H~-CZCH)), 173 &4 * fJ’htJ+Z)), 

V. Thermal rearrangement of Y-benzyl-6-proparnvloxypurine (51 t Isolation of altene (6) I 

A stirred solution of $2) (0.236g, 0.9 mmol) in o-dichlorobenzene (” 10 ml) was hefd 
at i45T br 2 h, cooled, solvents evaporated, the residue subjected to preparative TLC using PhH:EtOAa: 
7:3 as developer and the resulting fraction on crys_fJJization from benzene gave c~iwrless prisms of 
(f?)), mp J61*C, yield 0.06g (50%); IR I v 3090, 3060, 1950, 1690, 
5.3 (5, ZH), 5.6 (d, ZH), 7.24 (s, SH), ~‘~S~~J~~ 7.75 jbr, JH), 8.14 (5, IH); 

15~~_~~~M~6t~~~~J~ 
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202.2 ( CH=C=CH ), 154.8 (C=O), 88.6 (CH=C=CH2), 47.5 (CH2Phh m/z : 264 (M+)* l’h Preparative 
tic also afforzd O.flg of unchzged (2). 

VI. The reaction of 9-benzylhypoxanthine (4) with propargyl bromide I Preparation of 9-benzyl-l-propargyl- 

hypoxanthine (7) : 
Propargyl bromide (0.357g, 3 mmol) was added to a stirred solution of the sodium salt 

of (2) in MeOH- prepared from Na (O.O52g, 2.25 mmol) in dry methanol (- 15 ml) and (2) (0.3398, 1.5 
mmol)-the mixture left stirred at rt. ovemi ht, solvents evaporated and the residue chromatographed 
on silica gel. Elution with EtOAc gave 0. P 86%) of 9-benzyl-I-propargyl hypoxanthine (I) as colourless 
needles, mp IUZOC; IR I v 

yg 
- 3230, 1685; ‘H-NMR 

5.32 (s, ZH), 7.27 (s, ZH), 7.fs%, (:$)9’2”3 (s, I H); m/z : 264 (M+). 
: 6(=13) 2.53 (t, IH), 4.82 (d, ZH), 

VII. Ihe reaction of B-chloroquinazoline (8) with sodium allyloxide : Preparation of 4-aliyloxyquinaxoline 

(9) : - 
4Chloroquinazoline (8) (1.2g, 7.2 mmol)14 was added to a solution of sodium allyloxide 

in ally1 alcohol- prepared from Na Tb.Zg, 8.7 mmol) and ally1 alcohol (... 10 ml)-the mixture refluxed 
for 3 h, cooled, solvents evaporated, the residue triturated with benzene, decanted, evaporated and 
the resulting viscous oil distilled to give 1.2 g (89%) of l-allyloxyquinazoline (2) bp. IW/O.2 torrt (Foun_q 

C, 71.0; H, 5.21; N, 15.4; CalC. for C H N20 : C, 70.96; H, 5.37; N, 15.05%); IR : v (neat) cm 
3070, 3040, 1620, 1570; IH-NMR : 
8.66 (s, IH). 

s(tbdQ 5.0 (m, ZH), 5.2 (m, ZH), 6.1 (m, IH), 7ygx8.5 (m, 4H), 

VIII. Thermal rearrangement of Y-allyloxyguinazoline (9) : Isolation of [3,3] product killyl~inazolin- 

l-one (10) : 
Under nitrogen, 4-allyloxyquinazoline (2) (Ig, 5.37 mmol) was sealed, held at 190-2OO’C 

for 24 h, cooled, cautiously opened, extracted with CH Cl evaporated and chromatographed on silica 
gel. Elution with PhH:EtOAc::$:I gave 0.75g (75%) of2 &lylquinaxolin-$-one as white crystals,_lmp 
65’C (Found: C, 71.06; H, 5.33; Calc. for Cl H N20 r C, 70.96; H, 5.37%) ; IR I U, (KBr) cm 1675, 
1615, 1570;lH-NMR : s(CDC13) 4.55 (m, 2H), !Llk!)(m, ZH), 5.88 (m, IH), 7.2-7.9 (m, $ft), 8.1 (m, IH). 

IX. The reaction of B-chlorocsGnazoline (8) with sodium propargyloxide : Preparation of 4-propargyl- 

oxyquinazoline ( 12) t 
4-Chloroquinazoline (4 3.29g, 20 mmol) was added to a stirred solution of sodium propar- 

gyloxide in propargyl alcohol-prepared from sodium (0.55g, 24 mmol) and propargyl alcohol ( -20 ml)- 
the mixture refluxed for 2 h, solvents evaporated, the residue mixed with cold water ( - 100 ml), filtered, 
washed with water, dried and chromatographed. Elution with benzene gave 2.lg (57%) of B-propargyl- 
oxyquinazoline ( 12) as colourless needles, mp. 127T (Found: 

N20 I C, 71.73;H, 4.34; N, 15.21%); IR I vmax (KBr) cm 

~~72.23 ; H, 4.58; N, 15.08% ;Calcfor Cl H 
3180, 1600, 1565; NMR : 

(t, IH), 5.17 (d, ZH), 7.5-8.3 (m, BH), 8.7 (s, IH). 
S(CDC13) 4.43 

X. Thermal rearrangement of I-propargyloxy~inazoline (12) : Isolation of 3-propargylquinazoline-4- 

one (13) and the allene dimer (14) : 

A stirred solution of (12) (0.5g, 2.7 mmol) in o-dichlorcbenzene (- 10 ml) was held at 
180eC br 12 h, cooled, solvents evaporated and the residue chromatographed on silica gel. Elution gave 

with PhH: EtOAcr:85:15, 0.09g (18%) of unchanged (E), mp 127T and wi fi PhH:EtOAc:&2, 0.1 Ig (22%) 

(KBr) cm’ 
of 3-prop rgylquinazolin-4-onel (13) as colourless needles mp 116’C (lit. mp 116-118°C); IR : v 

3230, 1665, 1600; H-NMR : 6 (CDCli 2.53 (t, IH), 4.85 (d, 2H), 7.5-8.5 (m, 5H); m/z I ‘P@ 
(M+), 156 (M+-CO), 129 (M+~CO+HCN)), 102 (M -(CO+ZHCN)).Further l lution with PhH:EtOAc::4:6 gave 
the allene dimer (14) mp. 309T, yifld 0.13g (13%); (Found C, 71.27; H, 4.151 N, 15.66; Calc. for C 

0 * C 71.73; H 4.34; N, 15.21; 
(sflHk m/z : 368 (M+). 

H-NMR : 6 (CDC13) 2.46 (s, 2H), 2.68 (s, ZH), 7.3-8.4 (m, II 

H, N4 

??), fb.4 

Xl. ‘lhe reaction of quinazoline-l-one (I I) with propargyl bromide I Preparation of Spropargylquina- 

zolin-l-one (13) I 

Propargyl bromide (I.l9g, 10 mmol) was added to a stirred solution of the sodium salt 

of (1 I) in MeOKprepared from Na (O.l72g, 7.5 mmol) in dry methanol ( - 30 ml) and (I) (0.73g, 5 mmol)- 
themixture left stirred at rt. overnight, solvents evaporated and the residue chromatographed on silica 
gel. Elution with PhH:EtOAcc%2 gave 0.73g (91%) of (0). mp 117T. bis sample was identical to that 
obtained from Experiment X. 

XII. The reaction of l-chloroquinazoline (8) with acetoxime I Preparation of quinazoline oxime ether 

(18): 

U-Chloroquinazoline (29, 12.1 mmol)14 was added in portions to a stirred solution of 
the sodium salt of acetoxime-prepared from sat. aqueous NaOH (0.6g, 15 mmol) and acetoxime (Ig, 
13.7 mmol)-the mixture left stirred at rt. for 3 h, extracted with ether, drieQ (MgSO ) and Isolvents 
evaporated to give 2.2g (90%) of (18) as a viscous liquid; IR u max (neat) cm- 1620, q570; H-NMR 

: 6 (CDC13) 1.95 (s, 6H), 7.1-8.0 (m>H), 8.66 (s, IH). 
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XIII. Thermolysis of quinazoline oxime ether (I 8) : Isolation of rearranged product (19) : 

Under nitrogen, the oxime ether (I 8) (Ig, 4 mmol) was held at 16O’C tier 6 h, cooled, 

gave 0.16g (20%) &f (391, mp. 2OYC; IR : v 
extracted with CH Cl , solvents evaporated and thGesidue_lon preparative tic using EtOAc as +veloper 

(KBr) cm 
6 CCDC131 7.48 (m, IH), 7.63 (t, IH), 7.76 Cm,%, 

3340 (br), 1685, 1585, 1560, 1520, H-NMR: 

8.1 (m, 2H), 8.32 (s, IH); m/z : 161 (M+)* 

XIV. The reaction of 9-benzyl-6<hloropurine (I) with acetoxime t Preparation of purine oxime ether 

(Is): 

9-Benzyl-6<hloropurine (I, 0.5g, 2.05 mmol) was added in portions to a stirred solution 
of acetoxime sodium salt-prepared fromaq. NaOH (O.l22g, 3.3 mmol) and acetoxime (0.224g, 3.1 mmol)- 
the mixture left stirred at rt. overnight, filtered, washed with water, dried and crystallised from ethyl 
acetate to give 0.345g (62%) of (Is) as shining needles, mp. 170°C (Founds,C, 64.03; H, 5.23) I+ 24.641 

0 : C, 64.05; H, 5.34; N, 24.91%); IR : v 1590, 1570, 1060; H-NMR: 

s, 3H, 3H), 5.4 (s, ZH), 7.3 (s, 5H), 7.9 $?$,Kse.:‘c’,,“lH). 

XV. The reaction of 6chloro-9-tetrahydropyranylpurine with acetoxime : Preparation of purine oxime 

ether (16) : 
6Chloro-9-tetrahydropyranylpurine (2.Og, 8.35 mmol) was transformed, by procedure 

described in Experiment XIV, in 76% yield to the oxime ether (&h mlp. 135’C (Found: C, 56.2% H, 
5.98; Cjak. for c H N50 : C 
1050; H-NMR :61~C&131 21.9 ( 

2950, 2810, 1590, 1570, 1540, 

8.5 (s, IH). 
ZH), 5.6 (m, IH), 8.0 (s, IH), 
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